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Abstract: 
 

Artificial neural networks were used for prediction of three biomass ash fusion temperatures: 

initial deformation temperature IDT, hemispherical temperature HT and softening temperature FT 

based on chemical composition of the ash. Applicability of 400 neural network configurations (of 

linear, MLP, RBF and GRNN types) was verified statistically. Multilayer perceptron with 12 inputs 

representing fractions of ash compounds, 11 hidden neurons and three outputs (IDT, HT, FT) proved 

to be the optimal model configuration. Statistical analysis suggested also, that considering intrinsic 

dispersion within raw experimental data (literature data supplemented with the authors’ own results 

describing halloysite addition effect), quality of the resulting 3-output IDT-HT-FT model (IDT 

prediction with R
2
 0,615, HT with R

2
 0,756 and FT with R

2
 0,729) could be regarded satisfactory for 

the identification and generalization of the discussed relationships. Analysis of the neural model 

sensitivity in respect to input variables demonstrated, that the most important factors affecting all ash 

transition temperatures in 3-output IDT-HT-FT model were K2O, SiO2, CaO and Al2O3 fractions. 

Moreover, individual sensitivity in respect to IDT, HT and FT temperatures slightly varied 

(characteristics provided by independently established 1-output networks – IDT model, HT model and 

FT model, respectively). Statistically verified neural network working as 3-output IDT-HT-FT model 

can be applied in various computational tasks in biofuels energy sector required by Industry 4.0 

principles, as well as in selected Circular Economy problems. 

 

Key words: artificial neural networks, Circular Economy, ash fusion temperature, Industry 4.0, 

predictive model. 

 

 

Introduction 
 

Biofuels represent important sector in the present world’s energetic market [1]. These can be 

co-fired with coal [2] or converted into more convenient forms in processes of anaerobic digestion or 

by means of thermal decomposition technologies like pyrolysis or gasification. Neutral towards 

greenhouse effect, these are regarded to be environmentally friendly, providing sustainable 

development of modern industry. Especially important is also reusing or recycling of solid residues 

(ashes) after biomass fuel burning according to Circular Economy rules and principles. 

Chemical composition of the ashes, the residuals derived from biomass burning (especially 

their phase composition) is an important ash quality parameter. Ash represents mixture of inorganic 

and organic compounds, of various combinations and proportions [3]. It covers amorphous, semi-

crystalline and crystalline species, as well as char. Presence of complex organic liquids inclusions 

within the solid inorganic/organic structure makes that the system is heterogeneous. Its complexity can 

be confirmed by the fact, that 229 identified phases or minerals were found analytically in biomass ash 

structure, depending on initial composition of biomass, its origin and burning process parameters, as 

well as reaction/transformations schemes depending on thermodynamic conditions applied [4-7]. The 

most common compounds of the typical ashes are: silicates, oxides, hydroxides, oxyhydroxides, 



sulphates, sulphides, sulphosalts, sulphites, thiosulphates, phosphates, carbonates, bicarbonates, 

nitrates, chlorides, chlorites, chlorates, glass, some minor inorganic/organic phases/minerals [4]. 

Additional factors necessary for considering are particle morphology, shape and size distributions, 

which are also complex functions of both intrinsic biomass properties and sequence of technological 

processes and their parameters (mainly residence time, pressure and temperature, reaction schemes 

[8]), as well as presence of appropriately selected and dosed additives [9-11]. 

Ash composition and the ash-derived properties are the key-aspects in postprocessed 

utilization strategy of the biomass-derived ashes. It may include reusing/recycling [12-15] (according 

to Circular Economy standards and principles), as well as safe disposal (neutral to natural 

environment, assuring prevention of its contamination) [4,16]. Depending on ash composition, various 

disadvantageous phenomena are observed, like sintering, agglomeration, melting, clinkering, fouling, 

corrosion and slagging, as well as erosion and abrasion [17]. 

Different biomass ashes, depending on their composition, show different characteristic ash 

temperatures – thus consequently different physicochemical characteristics [18]. Prediction of 

thermodynamic behavior of the ash is a complex task – various approaches were reported in literature 

using empirical indices, coefficients and their unique combinations [19,20]. 

The term ash fusion temperature (AFT) is in practice characterized by various specific 

temperature points. These are usually: deformation temperature (DT), hemispherical temperature 

(HT), softening temperature (ST), as well as flow temperature (FT). Both various chemical 

composition of the fuel and sequence of processes with their parameters affect these temperatures 

values. Since these thermal parameters are important for practical applications (like recommended 

operation ranges, optimal process thermal efficiency, etc.), some models are required for possibly 

precise and reliable prediction of these parameters. Complex interactions between chemical 

composition of the raw biofuel, its natural structure, proportions of inorganic and organic fractions, as 

well as selected thermal processing technology affect, besides chemical and phase transformations of 

the constituents, also changes in solid matrix, diffusional and kinetic effects in heterogeneous matrix, 

as well as secondary reactions – all these define extremely complex interactions and intrinsic 

feedbacks resulting in diversified characteristic temperature parameters of the ash. Also commonly 

observed inhomogeneous composition of the available biofuels, co-substrates, additives and/or 

modifying agents, representing together “raw materials” in energy production processes define 

additional complexity of this technical problem. These examples suggest necessity of optimization of 

the technological processes of burning and their close integration with modern computer systems 

supervising the energy production processes in real time. One of such data processing systems and 

modeling tools, making such integration and control possible, are artificial neural networks (ANNs) 

being main element of the hybrid, ANN-based algorithms, making use of unique artificial intelligence 

advantages. These provide real possibility of rational selection of parameters involved in prediction, 

steering and control of the energetic burning processes, making them comply with global strategy of 

Industry 4.0. 

Considering the intrinsic complexity of the data, artificial neural networks were thus proposed 

for the examination and exploring of the hidden data structure, then for modeling of these relations, 

especially for identification of the interrelations and feedbacks within the input-output data. 

Neural networks are applied, among others, for modeling of various systems, objects or 

processes where one is not able to dispose any information about nature and strength of internal 

connections scheme within the system. This way classical regression techniques, based on imposing of 

a rigid model frame followed by calculation of these model coefficients, are not applicable. Instead, 

using neural network computations only representative set of data resulting e.g. from sampling of the 

object in different conditions is demanded. Using neural network approach it is even not necessary to 

assume any preliminary model frame since during net training various structures are tested and the 

network itself identifies and generalizes the knowledge concerning hidden interrelations and intrinsic 

feedbacks in the available representative (e.g. measurements, experimental) dataset. Theoretical 

background of neural networks structure, performance and training algorithms, with their 

mathematical details are presented e.g. in other authors’ works [21-28]. 

In literature one can find some examples of neural networks application in this field. For 

example neural nets were used for prediction of properties (or their changes) of building materials 

(concrete, cement, reinforced concrete) after ash addition [29-34], prediction of calorific and ash 



values of fuel [35] and process conditions (e.g. ash agglomerating fluidized bed gasifier [36]), 

estimation of ash content for the given fuel [37], forecasting of tribological behaviour of rice husk ash 

reinforced aluminum alloy matrix composites [38], as well as estimation of strength of geopolymers 

[39]. 

In accessible scientific literature one can find also some tests of neural network models 

applicability for forecasting of ash transition temperatures. However, all are focused rather on the coal 

ash properties based on fuel from various sources, what is then unequivocally reflected by chemical 

composition of the ashes. In [40] authors examined fusion temperature of coal ash based on industrial 

data. Neural network technique provided better results than various empirical approaches. As the 

neural network model inputs the following parameters were used: SiO2, Al2O3, Fe2O3, CaO, MgO 

(optionally with additional TiO2, K2O, Na2O, P2O5, SO3) mineral fractions. Output was represented by 

ash softening temperature (ST). Other work [41] focused on coal ash fusion temperature using net 

trained with backpropagation error (BP) algorithm coupled with the ant colony optimization 

algorithm. As the inputs seven oxide fractions were used, covering SiO2, Al2O3, Fe2O3, CaO, MgO, 

(K2O+Na2O) and TiO2, whereas fusion temperature was used as the output of the neural network 

model. The 10 hidden neurons were regarded to provide satisfactory prediction results and data 

structure mapping. Another work [42], also analyzing coal ash fusion temperature, reported 

application of three-layer BP network, with seven inputs representing fractions of SiO2, Al2O3, Fe2O3, 

CaO, MgO, TiO2, (K2O+Na2O) in chemical composition of coal ash, with one output neuron providing 

the information about softening temperature value. Eight hidden neurons were considered to be 

satisfactory enough for precise projection and modeling of this specific dataset.  

 

Calculations 
 

The data being the basis for neural network model construction were represented by coupled 

set published in [19] and the authors’ own data [43] covering burning experiments with addition of 

halloysite (more information about properties of halloysite and its potential applications can be found 

in other authors works’ [44-46]). These represented information from chemical analysis of 

postprocessed ashes after burning of various types of natural biomass, with corresponding 

characteristic temperatures. This data set [19] was supplemented with some information concerning 

own experiments, assuming the same form of data vectors (12 inputs coupled with 3 output 

temperatures – see Table 1). The original 101 data vectors of structure presented in Table 1 were 

normalized to 100%. Statistical characteristics of the database are presented in Table 1.  

 

Table 1 

Statistical characteristics of the dataset used for neural network models preparation. 
 Ash composition after biomass burning  

(dry weight basis) 

Ash melting 

temperatures [C] 

SiO2 CaO K2O P2O5 Al2O3 MgO Fe2O3 SO3 N2O TiO2 Sd Cl IDT HT FT 
 Input data Output data 

Mean 29,584 21,519 21,050 5,700 4,285 6,127 3,208 5,390 1,957 0,804 0,167 0,209 1151,3 1296,7 1323,5 

Median 28,383 15,363 18,271 3,878 2,582 4,556 1,809 3,530 0,998 0,240 0,080 0,080 1173 1249 1269 

St deviation 23,639 15,792 15,507 6,091 4,382 5,007 4,764 6,280 4,017 2,359 0,310 0,365 177,8 132,2 117,6 

Minimum 0 0,968 0,227 0 0,010 0,190 0 0,360 0 0 0,010 0 750 1070 1070 

Maximum 94,291 72,296 63,874 39,918 14,837 38,182 36,314 45,771 29,755 21,91

4 

2,276 3,017 1500 1500 1500 

 

Analyzing the model output parameters – IDT, HT and FT, especially comparing mean (or 

median) value with standard deviation for each parameter individually, one can notice relatively large 

dispersion of the output data, what can potentially affect the model performance. On the other hand, 

the minimum and maximum values of input parameters suggest, that the neural model can be 

potentially used in a wide range of input parameters values. 

Taking under consideration potentially complex intrinsic structure of the data, as well as 

presented and emphasized in literature difficulties and problems in correct modeling of the data using 

classical approaches based on statistics and regression rules (the reporting R
2
 varied within the 0,058 – 

0,708 range [19] depending on various combinations of indices), some alternative approach was 

suggested – artificial neural networks – computational method based on artificial intelligence 

approach.  



 

Results and discussion 

 
Calculations covering formulation of diversified neural networks structures and types, 

followed by their training, validating and testing were done in Statistica Neural Networks software 

environment. Main idea of the neural model was to predict three characteristic ash melting 

temperatures (defined as IDT, HT, FT) based only on chemical characteristics of the biomass 

represented by fractions (in %, dry weight basis [19]) of: SiO2, CaO, K2O, P2O5, Al2O3, MgO, Fe2O3, 

SO3, N2O, TiO2, Sd and Cl (assuming that =100%). These temperatures represented: IDT – initial 

deformation temperature, HT – hemosphere temperature and FT – fluid (softening) temperature. The 

available 101 numerical input-output data vectors  representative to the system, were randomly 

divided into training, validating and testing subsets, assuming proportions of 50% : 25% : 25%. 

Various neural networks topologies were systematically tested and compared. These were: 

linear networks, multilayer perceptrons (MLPs), radial basis functions (RBFs) and general regression 

neural networks (GRNNs). Neural network structures were trained in supervised mode, based on 

appropriate to each configuration training algorithms, including: pseudoinversion (PI), 

backpropagation error (BP), conjugate gradient (CG), k-means (KM), k-neighbors (KN) and 

subsample (SS) ones. Some exemplary results are presented in Table 2. Both networks with full 12 

inputs (see Table 1) and net structures with reduced inputs number (considering to the procedure of 

input vector dimension cutting according to performed on-line, strictly connected with training 

algorithm analysis of inputs importance hierarchy) were considered during systematic verification 

procedure. 

 

Table 2 

Exemplary artificial neural network configurations tested. 
No Network type and 

configuration 

(topology) 

Quality – 

training 

subset 

Quality – 

validating 

subset 

Quality – 

testing 

subset 

Error – 

training 

subset 

Error – 

validating 

subset 

Error – testing 

subset 

Details of neural 

network’s training 

sequence  

1 Linear 4-3 0,8733 0,9682 0,8864 0,2546 0,2868 0,2556 PI 

2 Linear 6-3 0,8242 0,9436 0,8394 0,2476 0,2881 0,2460 PI 

3 Linear 8-3 0,7887 0,9548 0,8305 0,2376 0,2937 0,2432 PI 

4 Linear 10-3 0,6985 0,9587 0,8718 0,2152 0,3018 0,2489 PI 

5 Linear 11-3 0,6981 0,9866 0,8779 0,2148 0,3133 0,2530 PI 

6 Linear 12-3 0,6998 0,9876 0,8778 0,2210 0,3105 0,2566 PI 

7 MLP 8-3-3 0,4866 0,9124 0,8316 0,1087 0,2064 0,1854 BP100, CG77 

8 MLP 12-11-3 0,4482 0,7869 0,6883 0,1167 0,2064 0,1658 BP100, CG34 

9 MLP 12-12-3 0,4026 0,9171 0,7821 0,0864 0,2055 0,1783 BP100, CG55 

10 MLP 4-9-4-3 0,6477 0,8362 0,6813 0,1651 0,2032 0,1691 BP100, CG84 

11 MLP 11-11-11-3 0,4068 0,8786 0,6273 0,0948 0,1902 0,1789 BP100, CG37 

12 MLP 12-13-11-3 0,3525 0,8557 0,6564 0,0841 0,2029 0,1659 BP100, CG39 

13 MLP 12-13-13-3 0,3290 0,9388 0,6067 0,0936 0,2059 0,1868 BP100, CG30 

14 RBF 11-4-3 0,8110 1,1831 0,8168 0,0058 0,0084 0,0057 KM, KN, PI 

15 RBF 11-5-3 0,8040 1,1478 0,8309 0,0057 0,0083 0,0059 KM, KN, PI 

16 RBF 11-7-3 0,7469 1,1159 0,8047 0,0054 0,0087 0,0056 KM, KN, PI 

17 RBF 11-9-3 0,5904 0,9680 0,7325 0,0042 0,0066 0,0049 KM, KN, PI 

18 RBF 11-14-3 0,5511 1,0547 0,7250 0,0041 0,0067 0,0047 KM, KN, PI 

19 GRNN 2-51-4-3 0,8791 0,9588 0,8889 0,0059 0,0068 0,0060 SS 

20 GRNN 4-51-4-3 0,7968 0,9726 0,8098 0,0054 0,0067 0,0058 SS 

21 GRNN 6-51-4-3 0,5889 1,0025 0,6816 0,0041 0,0068 0,0048 SS 

22 GRNN 10-51-4-3 0,3672 1,0292 0,7394 0,0029 0,0067 0,0052 SS 

23 GRNN 12-51-4-3 0,0954 1,0972 0,7312 0,0011 0,0069 0,0051 SS 

Linear – linear neural network 

MLP – multilayer perceptron 

RBF – radial basis function neural network 

GRNN – general regression neural network 
PI – pseudoinversion (neural network training algorithm) 

BP - backpropagation error (neural network training algorithm) 

CG - conjugate gradient (neural network training algorithm) 
KM - k-means (neural network training algorithm) 

KN - k-neighbors (neural network training algorithm) 

SS – subsample (neural network training algorithm) 

 



Linear networks tested demonstrated relatively simple net topologies – input and outputs, 

without hidden layer. Their modeling abilities, described by quality for validating subset, are rather 

poor and stable (0,9436–0,9876), even in case of systematically lowering the net input number from 

12 to 4 only. Significant improvement of the model quality is observed in case of multilayer 

perceptrons (MLPs), where change of the neuron’s transfer function (from linear into sigmoid) and 

introduction of hidden layer with hidden neurons developed and improved the net modeling properties 

clearly. Quality indicator for validating subset improved visibly (0,7869–0,9171). However, addition 

of second hidden layer, with different combinations of total number of hidden neurons and their 

distribution within both hidden layers, was not correlated with clear improvement of the net 

performance (quality indicator varied within the 0,8362–0,9388 range). Radial basis function networks 

(RBFs), considering quality indicator (0,9680–1,1831) seemed to be not adequate for this problem 

modeling. Similarly, the general regression neural networks (GRNNs) demonstrated approaching level 

of quality indicator (0,9588–1,0972). Moreover, considering number of hidden neurons (55) in all 

configurations tested, their generalization and regression abilities (interpolation, extrapolation) can be 

problematic. 

Optimal neural network structure was identified based on minimal value of quality indicator 

for validating subset (see No 8 in Table 2). Moreover, also some proportion/deviation between quality 

indicators for training, validating and testing subsets was additionally analyzed (demanded 

proportional trends in all three quality indicators values, possibly similar values, avoiding 

contradictory trends). The optimal net structure was multilayer perceptron (MLP) with 12 inputs, one 

hidden layer with 11 neurons and 3 outputs representing three temperatures: IDT, HT and FT. This 

optimal configuration was trained in supervised mode using hybrid training scheme – initially with 

100 iterations with fundamental backpropagation (BP) error algorithm, followed by the next 34 

iterations with other algorithm (conjugate gradient, CG). Statistical characteristic of the neural model 

in respect to three outputs – predicted ash melting temperatures IDT, HT and FT – is presented in 

Table 3. This neural network configuration is presented in Fig. 1 (as 3-output neural IDT-HT-FT 

model). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1 Scheme of the artificial neural network used as the numerical IDT-HT-FT model. 

 

Construction and practical verification of other, more specialized models, with one output only 

(representing IDT or HT or FT), denoted as IDT model, HT model and FT model, respectively 

(additional 300 dedicated working configurations tested – 100 ones for IDT model, 100 ones for HT 

model and 100 ones for FT model), resulted in similar statistical characteristics (Table 3). The general 

IDT-HT-FT model (3 outputs) and specialized 1-output models (IDT model, HT model, FT model) 

demonstrated the following R
2
: IDT 0,615 and 0,064 – 0,637, HT 0,756 and 0,179 – 0,810, as well as 

FT 0,729 and 0,004 – 0,724, appropriately. One can thus conclude, that quality of 3-output model and 

of three individually specialized 1-output models is roughly identical and specific structure and 

dispersion of the data in hyperspace cannot be in computational practice transformed better using the 

best-specialized, dedicated 1-output models. On the other hand, considering the reported [19] 

difficulties in identification of any correlation within the data and the correlations with R
2
 < 0,708 

Typ : MLP 12:12-11-3:3 ,  Ind. = 19
Jakość ucz. = 0,448175 ,  Jakość wal. = 0,786895 ,  Jakość test. = 0,688306



achievable with the use of classical regression methods, the R
2
 presented in Table 3 can be regarded 

comparable or even better. 

 

Table 3 

Statistical characteristics of neural networks representing the IDT-HT-FT, as well as the IDT, HT and 

FT models in respect to model outputs: IDT, HT and FT  
  

Model No 8 (see Table 2) 
representing the best configuration 

from within 100 of 3-outputs 

configurations tested 

Min and max 

values from within 
100 working 

network 

configurations 
tested 

Min and max 

values from within 
100 working 

network 

configurations 
tested 

Min and max 

values from within 
100 working 

network 

configurations 
tested 

 IDT-HT-FT model  

parameters in respect to: 

 

IDT model 

 

HT model 

 

FT model 

 IDT [C] HT [C] FT [C] IDT [C] HT [C] FT [C] 

Mean error 6,349 3,096 -10,035 -29,744 – 31,342 -19,553 – 26,017 -25,895 – 34,82 

Error deviation 109,997 65,178 61,051 107,595 – 188,493 60.961 – 168,029 62,392 – 157,194 

Mean absolute 

error 

76,018 51,557 46,342 62,215 – 150,625 38,106 – 127,194 46,388 – 102,821 

Correlation 0,785 0,869 0,854 0,252 – 0,798 0,423 – 0,900 0,063 – 0,851 

R2 0,615 0,756 0,729 0,064 – 0,637 0,179 – 0,810 0,004 – 0,724 

 
In general 400 neural network configurations were considered, including 100 net topologies 

representing IDT-HT-FT model, 100 for IDT model, 100 for HT model and 100 for FT model, 

respectively. 

Comparing the data in Table 1 and 3 concerning the three predicted parameters – ash melting 

temperatures – one can conclude, that because of intrinsic dispersion of the original data (standard 

deviation in respect to each temperature parameter – see Table 1: IDT 177,806C, HT 132,221C and 

FT 117,568C) the comparable parameter (error deviation) values – see Table 3: IDT 109,997C, HT 

65,178C and FT 61,051C are even smaller. This observation suggests, that further lowering of the 

model prediction error is not theoretically motivated and that model quality has already reached its 

allowable limits resulting from raw data structure and dispersion. Further lowering of error deviations 

values (model performance) compared to standard deviations (raw training/validation/testing data 

structure) may also be responsible for unwanted model effects since the neural network model will 

render, besides identification of main trends within the data, also some other less important 

correlations and connections within the data (information noise, sampling errors, etc.). This way 

further improvement of the net model quality is - under these conditions - not recommended. 

Graphical comparison of the experimental data and neural network IDT-HT-FT model 

predictions is presented in Fig. 2a-c. 
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Fig. 2 Comparison of experimental data and values predicted by neural network IDT-HT-FT model 

(a – IDT temperature, b) HT temperature, c) FT temperature). 

 

Sensitivity of the 3-output IDT-HT-FT neural network model in respect to individual inputs is 

presented in Table 4. Sensitivity tests were based on identification of model prediction error after 

systematic, individual removal of each parameter one time from within the original 12 input 

parameters set. 

 

Table 4 

Sensitivity analysis of the neural network 3-output IDT-HT-FT model in respect to individual inputs. 

 
Input Rank Error increment 

 

K2O 1 1,3521 

SiO2 2 1,3478 

CaO 3 1,1292 

Al2O3 4 1,1000 

SO3 5 1,0581 

Sd (in biomass) 6 1,0358 

P2O5 7 1,0335 

Fe2O3 8 1,0320 

Na2O 9 1,0255 

TiO2 10 1,0221 

MgO 11 1,0177 

Cl (in biomass) 12 0,9969 

 
From the data presented in Table 4 one can see, that the most important parameter affecting 

the three temperatures is K2O and SiO2 content, with error increments as 1,3521 and 1,3478, 

appropriately (rank 1 and 2). Both K2O and SiO2 contents are practically equally important for ash 

melting temperatures. Second group, of moderate importance in respect to three net outputs, is 

represented by CaO and Al2O3 contents (rank 3, error increment 1,1292 and rank 4 with error 

increment 1,1000). The last, however broad group of the lowest impact on the model predictions, is 

represented by: SO3, Sd (in biomass), P2O5, Fe2O3, Na2O, TiO2 and MgO (ranks 5 – 11, error increment 



range of 1,0581–1,0177). The last parameter (rank 12) can be regarded to be neutral in respect to 

model performance, suggesting minimal impact of Cl (in biomass) on the three ash melting 

temperatures. Moreover, in last case removal of this parameter (Cl) from the model inputs results in 

practically unmodified performance, and even improvement of statistical characteristic of the model 

(error increment < 1).  

It is also interesting to make sensitivity analysis in respect to individual ash melting 

temperatures, what can be done analyzing the performance of three 1-output models. The resulting 

data are presented in Table 5. 

 

Table 5 

Sensitivity analysis of the 1-output neural network models (representing individual ash 

melting temperatures: IDT, HT and FT) in respect to individual inputs. 
IDT model1 HT model2 FT model3 

Input 

 

Rank Error increment Input Rank Error increment Input Rank Error increment 

SiO2 1 1,2495 K2O 1 1,5674 CaO 1 1,3834 

Al2O3 2 1,1982 SiO2 2 1,4255 SiO2 2 1,3091 

CaO 3 1,1905 CaO 3 1,4172 K2O 3 1,2240 

K2O 4 1,0751 Al2O3 4 1,2526 Al2O3 4 1,1979 

SO3 5 1,0726 Na2O 5 1,1442 TiO2 5 1,1921 

Sd 6 1,0569 P2O5 6 1,0971 Na2O 6 1,1571 

P2O5 7 1,0469 Sd 7 1,0550 MgO 7 1,1451 

TiO2 8 1,0441 Cl 8 1,0336 P2O5 8 1,1114 

Cl 9 1,0039 MgO 9 1,0267 Fe2O3 9 1,0453 

MgO 10 1,0019 SO3 10 1,0123 Sd 10 1,0332 

Fe2O3 11 0,9995 Fe2O3 11 1,0098 Cl 11 1,0091 

Na2O 12 0,9399 TiO2 12 0,9684 SO3 12 0,9893 
1 IDT model: MLP 12-9-1, training set quality: 0,2488, validating set quality 0,5566, testing set quality 1,2559, training set error 
0,0605, validating set error 0,1164, testing set error 0,2877, training algorithms sequence: BP 100 iterations + CG 65 iterations 
2 HT model: MLP 12-7-1, training set quality 0,3475, validating set quality 0,6297, testing set quality 0,8207, training set error 0,0914, 

validating set error 0,1441, testing set error 0,1876, training algorithms sequence: BP 100 iterations + CG 26 iterations 
3 FT model: MLP 12-12-1, training set quality 0,2827, validating set quality 0,4494, testing set quality 0,7727, training set error 0,0630, 

validating set error 0,1096, testing set error 0,1607, training algorithms sequence: BP 100 iterations + CG 49 iterations 

 

Comparing and analyzing the data in Table 5 one can identify sensitivity towards input 

parameters (ash chemical components) in respect to each ash melting temperature individually. It is 

visible, that each characteristic temperature – IDT, HT and FT – demonstrates slightly different 

hierarchy of model inputs significance. 

Exemplary presentation of the model performance – simulation of simultaneous effect of SiO2 

(15–45%, dry weight basis) and Al2O3 (4–12%) changes (proportions) assuming constant values of: 

CaO (15%), K2O (15%), MgO (4%), Fe2O3 (1,5%), SO3 (3%), Na2O (1%), TiO2 (0,2%), Sd (in 

biomass) (0,05%) and Cl (in biomass) (0,05%) fractions, with P2O5 fraction representing the rest to 

100% is presented in Fig. 3a-c. It should be emphasized, that the observed smooth response surface 

speaks also for properly trained model network structure, without dominating overtraining effects 

demonstrating themselves as the surface oscillations, etc. 

It should be noted, that different combinations of constant (parameters) values can modify the 

SiO2- Al2O3 projection (even considerably) since all 12 inputs affect simultaneously and collectively 

(with higher or lower impact resulting from strength of interneuron connections – see Tables 4-5, 

activation levels of transfer function depending on bias values, etc.) the modeled output parameters 

representing three characteristic ash melting temperatures. 
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Fig. 3 Simultaneous effect of SiO2 (15–45%) and Al2O3 (4–12%) proportions - assuming constant 

values of: CaO (15%), K2O (15%), MgO (4%), Fe2O3 (1,5%), SO3 (3%), Na2O (1%), TiO2 

(0,2%), Sd (in biomass) (0,05%) and Cl (in biomass) (0,05%) fractions and P2O5 fraction 



representing the rest to 100% - on IDT (a), HT (b) and FT (c) ash fusion temperatures – 

graphical presentation of neural network IDT-HT-FT model predictions. 

 

 

Conclusions 
 

Artificial neural network model was proposed for prediction of ash melting temperatures 

based on chemical composition of the ash derived from biomass burning. Such ash properties are key 

indicators in selection of alternative processing routes according to Circular Economy technologies. 

Statistical indicators suggest, that considering the intrinsic dispersion within the original data 

structure, the results provided by the model can be regarded acceptable. However, considering 

reported in literature quality of various statistical approaches using classical regression methods and 

combinations of some indicators, quality of the demonstrated neural network model can be regarded as 

comparable or even better. 

To improve interpolation and extrapolation abilities of the model, more parameters potentially 

affecting the process should be considered and model construction development on this basis should 

be continued. Especially some parameters characterizing e.g. char structure may be considered, 

providing thus better modeling insight into simultaneous mass (diffusion/convection) and heat transfer 

in this heterogeneous reacting system, affecting indirectly environment of the chemical reactions 

selectivity, kinetics and phase changes.  

However, neural network model in its present form can be also used as efficient tool in some 

computational works or predictive simulations in energetic applications of biomass required by 

Industry 4.0 strategy. 
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